Quasilinear quadratic forms and function fields of quadrics

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasilinear Quadratic Forms and Function Fields of Quadrics

Let p and q be anisotropic quadratic forms of dimension ≥ 2 over a field F . In a recent article, we formulated a conjecture describing the general constraints which the dimensions of p and q impose on the isotropy index of q after scalar extension to the function field of p. This can be viewed as a generalization of Hoffmann’s Separation Theorem which simultaneously incorporates and refines so...

متن کامل

Hyperbolicity and near Hyperbolicity of Quadratic Forms over Function Fields of Quadrics

Let p and q be anisotropic quadratic forms over a field F of characteristic 6= 2, let s be the unique non-negative integer such that 2 < dim(p) ≤ 2, and let k denote the dimension of the anisotropic part of q after scalar extension to the function field F (p) of p. We conjecture that dim(q) must lie within k of a multiple of 2. This can be viewed as a direct generalization of Hoffmann’s Separat...

متن کامل

Applications of quadratic D-forms to generalized quadratic forms

In this paper, we study generalized quadratic forms over a division algebra with involution of the first kind in characteristic two. For this, we associate to every generalized quadratic from a quadratic form on its underlying vector space. It is shown that this form determines the isotropy behavior and the isometry class of generalized quadratic forms.

متن کامل

A Hasse Principle for Quadratic Forms over Function Fields

We describe the classical Hasse principle for the existence of nontrivial zeros for quadratic forms over number fields, namely, local zeros over all completions at places of the number field imply nontrivial zeros over the number field itself. We then go on to explain more general questions related to the Hasse principle for nontrivial zeros of quadratic forms over function fields, with referen...

متن کامل

Quadratic Forms over Arbitrary Fields

Introduction. Witt [5] proved that two binary or ternary quadratic forms, over an arbitrary field (of characteristic not 2) are equivalent if and only if they have the same determinant and Hasse invariant. His proof is brief and elegant but uses a lot of the theory of simple algebras. The purpose of this note is to make this fundamental theorem more accessible by giving a short proof using only...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2019

ISSN: 0025-5874,1432-1823

DOI: 10.1007/s00209-019-02312-x